Abstract
Estimation of the silicon (Si) mass balance in the ocean from direct measurements (Si uptake-dissolution rates …) is plagued by the strong temporal and spatial variability of the surface ocean as well as methodological artifacts. Tracers with different sensitivities toward physical and biological processes would be of great complementary use. Silicon isotopic composition is a promising proxy to improve constraints on the Si-biogeochemical cycle, since it integrates over longer timescales in comparison with direct measurements and since the isotopic balance allows to resolve the processes involved, i.e. uptake, dissolution, mixing. Si-isotopic signatures of seawater Si(OH) 4 and biogenic silica (bSiO 2) were investigated in late summer 2005 during the KEOPS experiment, focusing on two contrasting biogeochemical areas in the Antarctic Zone: a natural iron-fertilized area above the Kerguelen Plateau (< 500 m water depth) and the High Nutrient Low Chlorophyll area (HNLC) east of the plateau (> 1000 m water depth). For the HNLC area the Si-isotopic constraint identified Upper Circumpolar Deep Water as being the ultimate Si-source. The latter supplies summer mixed layer with 4.0 ± 0.7 mol Si m − 2 yr − 1 . This supply must be equivalent to the net annual bSiO 2 production and exceeds the seasonal depletion as estimated from a simple mixed layer mass balance (2.5 ± 0.2 mol Si m − 2 yr − 1 ). This discrepancy reveals that some 1.5 ± 0.7 mol Si m − 2 yr − 1 must be supplied to the mixed layer during the stratification period. For the fertilized plateau bloom area, a low apparent mixed layer isotopic fractionation value (∆ 30Si) probably reflects (1) a significant impact of bSiO 2 dissolution, enriching the bSiO 2 pool in heavy isotope; and/or (2) a high Si uptake over supply ratio in mixed layer at the beginning of the bloom, following an initial closed system operating mode, which, however, becomes supplied toward the end of the bloom (low Si uptake over supply ratio) with isotopically light Si(OH) 4 from below when the surface Si(OH) 4 pool is significantly depleted. We estimated a net integrated bSiO 2 production of 10.5 ± 1.4 mol Si m − 2 yr − 1 in the AASW above the plateau, which includes a significant contribution of bSiO 2 production below the euphotic layer. However, advection which could be significant for this area has not been taken into account in the latter estimation based on a 1D approach of the plateau system. Finally, combining the KEOPS Si-isotopic data with those from previous studies, we refined the average Si-isotopic fractionation factor to − 1.2 ± 0.2‰ for the Antarctic Circumpolar Current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.