Abstract

Despite its extreme aridity, the Ordos Basin in northern China is rich in groundwater. Many artesian wells or springs with large fluxes are utilized for drinking, irrigation and industrial production. In a search for the origin of the groundwater, a detailed investigation of the stable isotopes of oxygen and hydrogen in the local precipitation, the river water, the springs, the well water, as well as the soil water extracted from six soil profiles in the Ordos Basin, was carried out. The data show that δD, δ18O and TDS values of the river water are similar to those of groundwater, while the TDS values of the soil water are about ten times greater than those of groundwater. Furthermore, the mean isotopic compositions of the local precipitation are significantly higher than those of river water and groundwater. Based on the chloride mass balance method, the estimated recharge rates range from 5.2 to 17.2 mm/year, with a mean value of 10.5 mm/year. The results show that the main source of recharge of the groundwater in the Ordos Basin is not the local precipitation, but must come from a region where the precipitation is characterized by much lower δD and δ18O values. In addition, the groundwater in the Ordos Basin contains a component of mantle-derived 3He and crust-derived 4He suggesting that the groundwater may partly derive from flows through basement faults beneath the Ordos Basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call