Abstract
Demand for seafood, farmed or wild-caught, is growing globally. Consequently, seafood provenance is increasingly important to regulatory bodies, market chain actors and consumers. The limitations of current seafood provenance methods can be overcome using complementary or standalone nuclear techniques. This study focuses on determining the production method and geographic origin of Asian seabass (Lates calcarifer) using Stable Isotope Analysis (SIA) and X-ray fluorescence (XRF) through Itrax. The data were analysed using three different statistical methods; univariate and multivariate analysis, randomForest and LDA. The SIA model had accuracy of 84% when distinguishing the production methods and geographic origin of the L. calcarifer. The model using elemental analysis from the XRF returned an accuracy of 72%, and a combined SIA and elemental model was 81% accurate in determining provenance. However, the SIA model had two incorrect predictions compared to one incorrect prediction in the elemental model, while the combined model had no incorrectly predicted samples. The results of this study highlight that a combination of both SIA and elemental profiling through Itrax is ideal for seafood provenance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.