Abstract
Ammonium nitrate (AN) is frequently encountered in explosives in forensic casework. It is widely available as fertilizer and easy to implement in explosive devices, for example by mixing it with a fuel. Forensic profiling methods to determine whether material found on a crime scene and material retrieved from a suspect arise from the same source are becoming increasingly important. In this work, we have explored the possibility of using isotopic and elemental profiling to discriminate between different batches of AN. Variations within a production batch, between different batches from the same manufacturer, and between batches from different manufacturers were studied using a total of 103 samples from 19 different fertilizer manufacturers. Isotope-ratio mass spectrometry (IRMS) was used to analyze AN samples for their 15N and 18O isotopic composition. The trace-elemental composition of these samples was studied using inductively coupled plasma–mass spectrometry (ICP–MS). All samples were analyzed for the occurrence of 66 elements. 32 of these elements were useful for the differentiation of AN samples. These include magnesium (Mg), calcium (Ca), iron (Fe) and strontium (Sr). Samples with a similar elemental profile may be differentiated based on their isotopic composition. Linear discriminant analysis (LDA) was used to calculate likelihood ratios and demonstrated the power of combining elemental and isotopic profiling for discrimination between different sources of AN.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.