Abstract

Measurements of the present-day abundances of elements and isotopes, combined with model calculations, allow us to trace the history of nucleosynthesis in the universe. Throughout this review, emphasis will be placed on descriptions of the measurement processes and the interpretations needed to obtain actual isotope and element abundances from measurements. Comparisons of the abundances of isotopomers of a given element are less affected by systematic effects than are comparisons of the abundances of different elements. Thus ratios of isotopomers should be given a greater weight when data and models are compared. As is generally accepted, the universe began with an explosive event, the Big Bang. The nucleosynthesis associated with this event produced `primordial' abundances of the `light elements', deuterium, , , and . Subsequent stellar processing of the light elements has altered the relative abundances, and also produced heavier elements such as carbon, nitrogen and oxygen. Stellar nucleosynthesis products from solar and larger mass stars are expelled into the interstellar medium (ISM). The goal of studies of the abundances of the light elements is to estimate the primordial abundances, that is, the abundances produced in the Big Bang. It is believed that D is always net destroyed in stars; and may be net produced, is certainly net produced. In the Solar System itself, results are obtained from in situ measurements with space probes to Jupiter, measurements of solar wind constituents, the analysis of the content of meteorites, and spectral line measurements of the solar photosphere. For sources outside the Solar System, these data are based on spectral line measurements of gas-phase species. The ratio of gas-phase abundances of elements, such as carbon to lithium may be affected by differing amounts of condensation onto dust grains; however such a process will not affect the ratio of isotopes such as . The most reliable measurements of D to H ratios are based on spectroscopic measurements of Lyman series ultraviolet absorption lines from foreground interstellar gas. Measurements of clouds in our galaxy have been obtained with satellites such as the International Ultraviolet Observatory, Copernicus, and the Hubble Space Telescope. The most interesting new development is the measurement of distant clouds with large redshifted velocities. Such data can be taken with Earth-bound optical telescopes. In the near future the Far Ultra Violet Explorer will refine and extend measurements of D/H ratios in relatively nearby regions. Abundances of in the ISM have been measured using the hyperfine transition of , in galactic H II regions which are ionized by high-mass stars. is the most abundant of the light elements. The primordial abundance must be very accurately determined if one wishes to use this quantity to estimate the baryon density in the early universe. Recently /H ratios have been measured in a number of metal-poor compact blue galaxies. These sources seem to have had little stellar evolution, so the ratio should be close to the primordial value. Estimates of the primordial abundance of are made for a population of old stars found far from the plane of our galaxy. A refinement of Li abundance estimates requires a more detailed understanding of the Li destruction processes in stars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call