Abstract

In this work we have studied ligand-induced secondary structure changes in the small calcium regulatory protein calmodulin (CaM) using vibrational circular dichroism (VCD) spectroscopy. We find that, due to its chiral sensitivity, VCD spectroscopy has increased ability over IR spectroscopy to detect changes in the structure and flexibility of secondary structure elements upon ligand binding. Moreover, we demonstrate that the uniform isotope labeling of CaM with (13)C shifts its amide I' VCD band by about approximately 43 cm(-1) to lower wavenumbers, which opens up a spectral window to simultaneously visualize a bound target protein. Therefore this study also provides the first example of how isotope labeling enables protein-protein interactions to be studied by VCD with good separation of the signals for both isotope-labeled and unlabeled proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.