Abstract

Isotope-coded affinity tags (ICATs) are valuable tools for mass spectrometry-based quantitative proteomics, in particular, for comparison of protein (cysteine-residue) thiol oxidation state in normal, stressed, and diseased tissue. However, the iodoacetamido electrophile used in most commercial ICATs suffers from poor thiol-selectivity and modest rates of adduct formation, which can lead to spurious results. Hence, we designed and synthesized three ICATs containing thiol-selective N-alkylmaleimide electrophiles (isotope-coded maleimide affinity tags = ICMATs) and assessed these as mass spectrometry probes for ratiometric analysis of lysozyme and muscle proteomes. Two ICMAT pairs containing butylene/D8-butylene linkers were effective MS probes, but not ideal for typical proteomics workflows, because peptides bearing these tags frequently did not coelute with HPLC. A switch to a phenylene/13C6-phenylene linker solved this issue without compromising the efficiency of adduct formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call