Abstract

Isotope shift measurements in 660 spectral lines covering the 340–605nm wavelength region of Er I were carried out using a Fourier Transform Spectrometer. The spectra were recorded using a liquid nitrogen cooled hollow cathode discharge source containing highly enriched 166Er and 170Er isotopes in the oxide form and two different detectors namely PMT and silicon photo diodes. Out of 660 spectral lines involving 216 even and 182 odd Er I levels, the isotope shift data were new in the 406 lines. On the basis of their level isotope shifts out of 114 unassigned even parity levels 27 levels assigned to 4f116s26p, 72 to 4f115d6s6p and 15 to 4f126s6d configuration whereas 12 each of unassigned odd parity levels assigned to 4f115d6s2, and 4f126s6p configurations and 16 unassigned odd parity levels assigned to 4f115d26s configuration. Configuration mixing for 30 odd parity energy levels has been theoretically calculated applying ‘Sharing Rule’ to the experimentally derived level isotope shifts, which were finally compared with mixings available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call