Abstract

Instrumentation and methods exist for highly precise analyses of the stable-isotopic composition of organic compounds separated by GC. The general approach combines a conventional GC, a chemical reaction interface, and a specialized isotope-ratio mass spectrometer (IRMS). Most existing GC hardware and methods are amenable to isotope-ratio detection. The interface continuously and quantitatively converts all organic matter, including column bleed, to a common molecular form for isotopic measurement. C and N are analyzed as CO2 and N2, respectively, derived from combustion of analytes. H and O are analyzed as H2 and CO produced by pyrolysis/reduction. IRMS instruments are optimized to provide intense, highly stable ion beams, with extremely high precision realized via a system of differential measurements in which ion currents for all major isotopologs are simultaneously monitored. Calibration to an internationally recognized scale is achieved through comparison of closely spaced sample and standard peaks. Such systems are capable of measuring 13C/12C ratios with a precision approaching 0.1 per thousand (for values reported in the standard delta notation), four orders of magnitude better than that typically achieved by conventional "organic" mass spectrometers. Detection limits to achieve this level of precision are typically < 1 nmol C (roughly 10 ng of a typical hydrocarbon) injected on-column. Achievable precision and detection limits are correspondingly higher for N, O, and H, in that order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.