Abstract
The double spike technique has been used to measure the isotope fractionation and elemental abundance of Cd in nine lunar samples, the Brownfield meteorite and the Columbia River Basalt BCR-1, by thermal ionisation mass spectrometry. Lunar soil samples give a tightly grouped set of positive isotope fractionation values of between + 0.42% and + 0.50% per mass unit. Positive isotope fractionation implies that the heavy isotopes are enhanced with respect to those of the Laboratory Standard. A vesicular mare basalt gave zero isotope fractionation, indicating that the Cd isotopic composition of the Moon is identical to that of the Earth. A sample of orange glass from the Taurus-Littrow region gave a negative isotope fractionation of − 0.23 ± 0.06% per mass unit, presumably as a result of redeposition of Cd from the Cd-rich vapour cloud associated with volcanism. Cadmium is by far the heaviest element to show isotope fractionation effects in lunar samples. The volatile nature of Cd is of importance in explaining these isotope fractionation results. Although a number of mechanisms have been postulated to be the cause of isotope fractionation of certain elements in lunar soils, we believe that the most likely mechanisms are ion and particle bombardment of the lunar surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.