Abstract

Isotope effects under the influence of a radial electric field are examined in a helical magnetic field configuration. We perform global gyrokinetic simulations with additional poloidal rotations to estimate quasi-linear heat flux due to ion temperature gradient mode under the mixing length model. In single-ion-species plasmas, the mass number dependency of heat flux agrees with gyro-Bohm scaling in the absence of a radial electric field. Favorable mass number dependencies violating gyro-Bohm scaling are observed in the presence of a global radial electric field or a heavy hydrogen component in multi-ion-species plasmas. The radial electric field and the heavy hydrogen component affect the heat flux through an increase of wavelength as well as mode stabilization. Poloidal Mach number characterizes the transition from unfavorable to favorable mass number dependency under radial electric fields. While the heat flux is independent of mass number for a given poloidal Mach number, the heat flux decreases for higher mass numbers in a given radial electric field. The heat flux is also independent of average mass number in multi-ion-species plasmas because the heavy hydrogen component effectively enhances the light hydrogen heat flux. The present results are potentially relevant to the violation of gyro-Bohm scaling observed in the recent deuterium experiments in the Large Helical Device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.