Abstract

Based on a recently developed potential energy surface and the semi-rigid vibrating rotor target model, a time-dependent wave packet dynamic study for the isotope effects of the Cl + CH 4/CD 4 reactions was conducted. The initial state-specific probabilities exhibited the replacement of hydrogen by deuterium significantly decreased the reaction ability, and the rovibrational excitations of the methane molecule favored the progress of the reaction. Additionally, the ground state rate constants are reported and compared with the experimental and other theoretical ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.