Abstract
Here we investigate isotope effects on the catalytic methanol synthesis reaction and the reactivity of copper-bound formate species in CO2–H2 atmospheres on Cu/SiO2 catalysts by simultaneous IR and MS measurements, both steady-state and transient. Studies of isotopic variants (H/D, 12C/13C) reveal that bidentate formate dominates the copper surface at steady state. The steady-state formate coverages of HCOO (in 6 bar 3:1 H2:CO2) and DCOO (in D2:CO2) are similar and the steady-state formate coverages in both systems decrease by ~80% from 350 K to 550 K. Over the temperature range 413 K–553 K, the steady-state methanol synthesis rate shows a weak H/D isotope effect (1.05 ± 0.05) with somewhat higher activation energies in H2:CO2 (79 kJ/mole) than D2:CO2 (71 kJ/mole) over the range 473 K–553 K. The reverse water gas shift (RWGS) rates are higher than methanol synthesis and also shows a weak positive H/D isotope effect with higher activation energy for H2/CO2 than D2/CO2 (108 vs. and 102 kJ/mole) The reactivity of the resulting formate species in 6 bar H2, 6 bar D2 and 6 bar Ar is strongly dominated by decomposition back to CO2 and H2. H2 and D2 exposure compared to Ar do not enhance the formate decomposition rate. The decomposition profiles on the supported catalyst deviate from first order decay, indicating distributed surface reactivity. The average decomposition rates are similar to values previously reported on single crystals. The average activation energies for formate decomposition are 90 ± 17 kJ/mole for HCOO and 119 ± 11 kJ/mole for DCOO. By contrast to the catalytic reaction rates, the formate decomposition rate shows a strong H/D kinetic isotope effect (H/D ~8 at 413 K), similar to previously observed values on Cu(110).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.