Abstract

A comprehensive microscopic understanding of ambient liquid water is a major challenge for ab initio simulations as it simultaneously requires an accurate quantum mechanical description of the underlying potential energy surface (PES) as well as extensive sampling of configuration space. Due to the presence of light atoms (e.g. or ), nuclear quantum fluctuations lead to observable changes in the structural properties of liquid water (e.g. isotope effects), and therefore provide yet another challenge for ab initio approaches. In this work, we demonstrate that the combination of dispersion-inclusive hybrid density functional theory (DFT), the Feynman discretised path-integral (PI) approach, and machine learning (ML) constitutes a versatile ab initio based framework that enables extensive sampling of both thermal and nuclear quantum fluctuations on a quite accurate underlying PES. In particular, we employ the recently developed deep potential molecular dynamics (DPMD) model – a neural-network representation of the ab initio PES – in conjunction with a PI approach based on the generalised Langevin equation (PIGLET) to investigate how isotope effects influence the structural properties of ambient liquid and . Through a detailed analysis of the interference differential cross sections as well as several radial and angular distribution functions, we demonstrate that this approach can furnish a semi-quantitative prediction of these subtle isotope effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.