Abstract

Precision measurements using the Rydberg charge-exchange and electric field-detachment methods find that the dipole-bound electron affinity (EA) of acetone (C3H6O) is 55+/-10 mueV greater than for deuterated acetone (C3D6O). The result agrees well with a theoretical prediction obtained with high-level electronic-structure and anharmonic vibrational calculations. The dipole moments calculated for the vibrationally averaged structures of C3H6O and C3D6O show that the isotope effect (2% reduction) on the EA of acetone is mainly due to a slight reduction (0.5%) of the average dipole moment upon deuteration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call