Abstract
Kinetic isotope effects were determined for the chlorotrimethylsilane-mediated reactions of cyclohexenone with lithium dibutylcuprate in tetrahydrofuran and with lithium butyl(tert-butylethynyl)cuprate in ether. For the reaction in tetrahydrofuran, the observation of a significant carbonyl oxygen isotope effect (16k/17k = 1.018−1.019) and small olefinic carbon isotope effects (12k/13k = 1.003−1.008) is consistent with rate-limiting silylation of an intermediate π-complex. Theoretically predicted isotope effects for model reactions support this conclusion. Rate-limiting silylation is also supported by relative reactivity studies of chlorotrimethylsilane versus chlorodimethylphenylsilane. The absence of a significant butyl-group carbon isotope effect on product formation indicates that the cuprate butyl groups are nonequivalent in the intermediate leading to the product-determining step. In diethyl ether the isotope effects revert to values similar to those found previously in reactions of cyclohexenone wit...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.