Abstract

The catalytic mechanism of porcine heart NADP isocitrate dehydrogenase has been investigated by use of the variation of deuterium and 13C kinetic isotope effects with pH. The observed 13C isotope effect on V/K for isocitrate increases from 1.0028 at neutral pH to a limiting value of 1.040 at low pH. The limiting 13C isotope effect with deuteriated isocitrate at low pH is 1.016. This decrease in 13(V/KIc) upon deuteriation indicates a stepwise mechanism for the oxidation and decarboxylation of isocitrate. This predicts a deuterium isotope effect on V/K of 2.9, but D(V/K) at low pH only increases to a maximum of 1.08. It is not known why 13(V/KIc) with deuteriated isocitrate decreases more than predicted. The pK seen in the 13(V/KIc) pH profile for isocitrate is 4.5. This pK is displaced 1.2 pH units from the true pK of the acid/base functionality of 5.7 seen in the pKi profile for oxalylglycine, a competitive inhibitor for isocitrate. From this displacement, catalysis is estimated to be 16 times faster than substrate dissociation. By use of the pH-dependent partitioning ratio of the reaction intermediate oxalosuccinate between decarboxylation to 2-ketoglutarate and reduction to isocitrate, the forward commitment to catalysis for decarboxylation was determined to be 7.3 at pH 5.4 and 3.2 at pH 5.0. This gives an intrinsic 13C isotope effect for decarboxylation of 1.050. 3-Fluoroisocitrate is a new substrate oxidatively decarboxylated by NADP isocitrate dehydrogenase. At neutral pH, D(V/K3-F-Ic) = 1.45 and 13(V/K3-F-Ic) = 1.0129. At pH 5.2, 13(V/K3-F-Ic) increases to 1.0186, indicating that a finite, but diminished, external commitment remains at neutral pH. The product of oxidative decarboxylation of 3-hydroxyisocitrate by NADP isocitrate dehydrogenase is 2-hydroxy-3-ketoglutarate. This results from enzymatic protonation of the cis-enediol intermediate at C2 rather than C3 (as seen with isocitrate and 3-fluoroisocitrate). 2-Hydroxy-3-ketoglutarate further decarboxylates in solution to 2-hydroxy-3-ketobutyrate, which further decarboxylates to acetol. This makes 3-hydroxyisocitrate unsuitable for 13C isotope effect studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.