Abstract

The isotope effect on the collective proton/deuteron transfer in hydrogen and deuterium fluoride crystals has been investigated at 100 K by ab initio quantum-thermal-bath path-integral molecular dynamics (QTB-PIMD) simulation. The deuterons within a planar zigzag chain of the orthorhombic structure simultaneously flip between covalent and hydrogen bonds due to the barrier crossing through tunnelling. The height of the corresponding static barrier normalized for one deuteron is 29.2 meV. In the HF crystal, all the protons are located at the center of the heavy-atom distance. This evidences the symmetrization of the H-bonds, and indicates that the proton zero-point energy is above the barrier top. The decrease of the heavy-atom distance due to quantum fluctuations in both HF and DF crystals corresponds to a large decrease and an increase of the hydrogen and covalent bond lengths, respectively. Upon deuteration, the increase of the heavy-atom distance (Ubbelohde effect) is in agreement with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.