Abstract
The isotope effect (IE) in the two-dimensional Hubbard model with Holstein phonons is studied using the dynamical cluster approximation with quantum Monte Carlo. At small electron-phonon (EP) coupling the IE is negligible. For larger EP coupling there is a large and positive IE on the superconducting temperature that decreases with increasing doping. A significant IE also appears in the low-energy density of states, kinetic energy, and charge excitation spectrum. A negligible IE is found in the pseudogap and antiferromagnetic (AF) properties at small doping, whereas the AF susceptibility at intermediate doping increases with decreasing phonon frequency ${\ensuremath{\omega}}_{0}$. This IE stems from increased polaronic effects with decreasing ${\ensuremath{\omega}}_{0}$. A larger IE at smaller doping occurs due to stronger polaronic effects determined by the interplay of the EP interaction with stronger AF correlations. The IE of the Hubbard-Holstein model exhibits many similarities with the IE measured in cuprate superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.