Abstract

Bromoxynil is an increasingly applied nitrile herbicide used for post-emergent control of annual broadleaved weeds. Compound-specific isotope analysis (CSIA) of the compound is of interest for studying its environmental fate, yet is challenging following its polar nature. We present a CSIA method for bromoxynil that includes offline thin-layer chromatography purification followed by an elemental analyzer isotope ratio mass spectrometer (EA-IRMS). This method was shown to be accurate and precise for δ13C and δ15N analysis of the compound (standard deviation of replicate standards <0.5‰). The method was applied to photodegraded samples, either radiated under laboratory condition with a UV lamp, or exposed to sunlight under environmental conditions. Dominating degradation products were similar in both cases. Nevertheless, isotope effects differed, presenting a strong inverse carbon isotope effect (εC = 4.74 ± 0.82‰) and a weak inverse nitrogen isotope effect (εN = 0.76 ± 0.12‰) for the laboratory experiment, and an insignificant carbon isotope effect (εC = 0.34 ± 0.44‰) and a normal nitrogen isotope effect (εN = −3.70 ± 0.30‰) for the natural conditions experiment. The differences in δ13C vs. δ15N enrichment trends suggest different mechanism for the two processes. Finally, the obtained dual isotope trend for natural conditions provide the basis for studying the dominance of photodegradation as a degradation route in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call