Abstract

The force-velocity-length determinants of isotonic relaxation were studied in 12 cat papillary muscles. Isotonic relaxation velocity (VL) was found to be a function of total load (preload + afterload), with peak VL increasing to a maximum at loads approximately .3 to .4 Po(L') (Po(L') defined as maximum isometric force developed during a twitch at the experimental length) and falling with increasing loads. Initial muscle length (ML) had no effect on the peak VL with constant load. Increasing the initial length at which isotonic relaxation occurred (LL) decreased peak VL but did not alter the unique length-velocity trajectory at constant load. This unique length-velocity trajectory occurred, despite a wide variation in time during the contraction when peak VL was measured. Increasing Ca++ from 2.5 to 7.5 mM increased peak VL (1.73 +/- .16 to 2.32 +/- .20 ML/s) and shifted the entire length-velocity trajectory toward higher velocities of lengthening. The addition of 10 mM caffeine increased peak VL also (1.67 +/- .18 to 2.54 +/- .20 ML/s) and had a similar effect on the length-velocity trajectory during lengthening as Ca++. Both increased Ca++ and caffeine (10 mM) augmented the maximum VL measured on addition of load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call