Abstract

The unintended exposure of humans and animals to isothiazolinones has led to an increasing concern regarding their health hazards. Isothiazolinones were previously found to disrupt reproductive endocrine homeostasis. However, the long-term reproductive toxicity and underlying mechanism remain unclear. In this study, life-cycle exposure of medaka to dichlorocthylisothiazolinone (DCOIT), a representative isothiazolinone, significantly stimulated the gonadotropin releasing hormone receptor (GnRHR)-mediated synthesis of follicle stimulating hormone and luteinizing hormone in the brain. Chem-Seq and proteome analyses revealed disturbances in the G-protein-coupled receptor, MAPK, and Ca2+ signaling cascades by DCOIT. The G protein αi subunit was identified as the binding target of DCOIT. Gαi bound by DCOIT had an enhanced affinity for the mitochondrial calcium uniporter, consequently changing Ca2+ subcellular compartmentalization. Stimulation of Ca2+ release from the endoplasmic reticulum and blockage of Ca2+ uptake into the mitochondria resulted in a considerably higher cytoplasmic Ca2+ concentration, which then activated the phosphorylation of MEK and ERK to dysregulate hormone synthesis. Overall, by comprehensively integrating in vivo, ex vivo, in silico, and in vitro evidence, this study proposes a new mode of endocrine disrupting toxicity based on isothiazolinones, which is expected to aid the risk assessment of the chemical library and favor the mechanism-driven design of safer alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.