Abstract
AbstractL. (ZscL) is a plant residue that has been used as adsorbent for the removal of Hg(II) ions from an aqueous solution. The ability of ZscL to adsorb Hg(II) ions was investigated by using the batch adsorption procedure. It was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) to support the adsorption of Hg(II) ions. The effects of various parameters on the adsorption process, such as contact time, adsorbent concentration, solution pH and initial concentrations of metal ions were studied to optimize the conditions for maximum adsorption. Experimental equilibrium data were fitted to the Freundlich, Langmuir, Dubinin-Radushkevich, Halsey and Temkin (two parameter models), Redlich-Peterson, Sips, Khan, Hill, Radke-Prausnitz, Langmuir-Freundlich and Toth (three parameter models), Fritz-Schlunder and Baudu (four parameter models) and Fritz-Schlunder (five parameter model) at 30°C by using nonlinear regression analysis. The examination of error analysis methods showed that the Halsey model provides the best fit for experimental data compared with the other isotherms. Various kinetic models have been applied to the experimental data to predict the adsorption kinetics. It was found that pseudo-second-order rate was better obeyed than pseudo-first-order reaction, supporting that the chemisorption process was involved. The obtained results show that ZscL can be used as an effective and natural low-cost adsorbent for the removal of Hg(II) ions from aqueous solutions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.