Abstract
Liquid organic peroxides have been broadly employed in the process industries such as tert-butyl peroxy-2-ethyl hexanoate (TBPO). This study investigated the thermokinetic parameters of TBPO, a typical liquid organic peroxide, by isothermal kinetic algorithms and non-isothermal kinetic algorithms with thermal activity monitor III, and differential scanning calorimetry, respectively. An attempt has been made to determine the thermokinetic parameters by simulation software, such as exothermic onset temperature (T0), maximum temperature (Tmax), decomposition (∆Hd), activation energy (Ea), self-accelerating decomposition temperature, and isothermal time to maximum rate (TMRiso). A liquid thermal explosion model was established for a reactor containing liquid organic peroxide of interest. From experimental results, liquid organic peroxides’ optimal conditions for avoiding a violent runaway reaction of storage and transportation were created.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.