Abstract

Isothermal titration calorimetry, ITC, was used to determine the enthalpy and heat capacity changes that accompany micelle formation of decyldimethylphosphine oxide, APO10, from 15-79 degrees C in the presence of representative neutral salts from the Hofmeister series. The solutions investigated were water, 0.2, 0.5, and 1.0 NaCl, 0.5 M NaF, KCl, KI, guanidinium chloride (GuHCl) and mannitol, and 0.333 M Na2SO4. The heat capacity change at 25 degrees C (but not the cmc) and the parameter that describes the temperature dependence of the heat capacity change, B (cal/(mol K2)), appear to be correlated. Calculated values of the ion effects on micelle formation from a recent salt ion partitioning model (SPM) of Pegram and Record [J. Phys. Chem. B 2007, 111, 5411-5417] were quantitatively related to the experimental value of the solute free energy increment (SFEI). Use of this model requires a calculation of the solvent accessible area (ASA), which yields values for the extent of hydration of the micelle interior. An alternate method to determine the ASA based on the heat capacity change for micelle formation at 25 degrees C of APO8-12 yielded values for the number of buried carbon atoms (5-12) versus previous estimates (4-8) from analysis of the B parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.