Abstract

In the continuous strip casting process a meniscus forms a compliant boundary between the casting nozzle and transporting conveyor. Movement of this meniscus during casting has been shown to create surface defects, which require extensive cold work to remove and limit the minimum thickness for which sections may be cast. This paper discusses experimental work conducted to test an analytical model of the meniscus oscillation. A high frame rate shadowgraph technique was used on an isothermal water model of the casting process to observe meniscus motion, and thus allowing the calculation of meniscus frequency, amplitude, contact points and contact angles. Both natural frequency and flow excited tests were conducted. Natural frequency tests were also conducted using mercury as the working fluid, having a non-wetting contact angle, typical of molten metals. The experimental results were found to be in good agreement with the predictions of theory for both wetting and non-wetting conditions. The experimentally verified analytical model for meniscus motion is valuable to the design of the continuous casting process, because it offers an opportunity to mitigate the effects of boundary motion on surface quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.