Abstract

ABSTRACTA multi‐functional epoxy (ADR) was used to improve compatibilization of poly(lactic acid) (PLA)/ thermoplastic polyester elastomer (TPEE) blends. Influence of ADR on isothermal melt crystallization of the blends was investigated. The results show that isothermal melt crystallization rate of the samples increases with ADR loading. It can be attributed to a nucleation enhancement resulted from an increase of molecular weight and melt viscosity created by the chain extension/branched process of PLA in the presence of ADR. In addition, the maximum crystallinity of the samples shows a decrease with increasing ADR loading because of the chain extended and branched reaction. Quenched and crystallized samples were fabricated using compression molding under different cooling conditions in‐mold. Effects of crystallinity and ADR on mechanical performances of the PLA/TPEE sample were investigated. With increasing the crystallinity, the PLA/TPEE sample shows a marked enhancement in heat resistance. However, the tensile ductility of the crystallized PLA/TPEE sample drastically decreases due to the formation of firm crystal crosslinking and the incompatibility between PLA and TPEE. It is notable that the tensile ductility of the crystallized samples is improved with the introduction of ADR owing to its reactive compatibilization effect. Finally, the crystallized PLA/TPEE/ADR samples with improved heat resistance and relative higher ductility are obtained. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46343.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call