Abstract

An isothermal dehydration of equilibrium swollen poly(acrylic acid) hydrogel in the temperature range from 306 to 361 K was investigated. The specific parameters connected with shape of the conversion curves were defined. The activation parameters (E, lnA) of the isothermal dehydration of equilibrium swollen poly(acrylic acid) hydrogel were calculated, using Johnson-Mehl-Avrami (JMA), ‘initial rate’ and ’stationary point’ methods. The reaction models for the investigated dehydration are determined using the ‘model-fitting’ method. It was established that both, the reaction model and activation parameters of the hydrogel dehydration were completely different for the isothermal process than for the non-isothermal one. It was found that the increase in dehydration temperature lead to the changes in isothermal kinetic model for the investigated hydrogel dehydration. It was established that the apparent activation energy (E) of hydrogel dehydration is similar to the value of the molar enthalpy of water evaporation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.