Abstract

In lubricated contacts, the component macrogeometry (radius of curvature) determines the pressure generation, and the surface microgeometry (i.e., roughness) alters it somewhat. However, for parallel surfaces, the microgeometry completely determines the hydrodynamic lubrication. This paper extends earlier work to numerically solve the isothermal hydrodynamic pressure generation and load carrying capacity (LCC) of surfaces with more complicated roughness features. A fast Fourier transform (FFT)-based method is described to quickly obtain the pressure distribution. The method is applicable to both real surface topographies and artificially generated rough surfaces. Results show that it enables one to predict the hydrodynamic pressure, when cavitation is negligible. The relative error of the LCC over the central domain is smaller than 8% and a 500× time saving, compared with the numerical method, is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.