Abstract

Poly(trimethylene terephthalate) was investigated by isothermal thermogravimetry in nitrogen at six temperatures, including 304, 309, 314, 319, 324, and 336°C. The isothermal data have been analyzed using both a peak maximum technique and an iso-conversional procedure. Both techniques gave apparent activation energies of 201 and 192 kJ mol−1, respectively, for the isothermal degradation of poly(trimethylene terephthalate) in nitrogen. The decomposition reaction order is calculated to be 1.0. The natural logarithms of the frequency factor based on the peak maximum and the iso-conversional techniques are 36 and 34 min−1, respectively, for poly(trimethylene terephthalate) decomposed isothermally in nitrogen. These isothermal kinetic parameters are in good agreement with those derived by the Kissinger technique on the basis of the dynamic thermogravimetric data reported elsewhere (209 kJ mol−1, 1.0 and 37 min−1). The isothermal decomposition of poly(trimethylene terephthalate) in nitrogen undergoes two processes, a relative fast degradation process in the initial period and a subsequent one with a slower weight-loss rate. The former process may be due to the removal of ester groups, trimethylene groups, and aromatic hydrogen atoms from the chain of poly(trimethylene terethphalate). The latter one may be ascribed to the further pyrolysis of the carbonaceous char. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1600–1608, 2002; DOI 10.1002/app.10476

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.