Abstract
Liquid addition to landfilled municipal solid waste (MSW) is a practice employed to accelerate the biodegradation of the organic fraction of MSW and ensuing gas generation. Pore landfill gas (LFG) and leachate pressure from the added moisture and enhanced gas generation are expected to impact the geotechnical stability of landfill slopes. The impact of moisture addition and gas collection on the stability of landfills was numerically modeled using transient isothermal dual-phase flow and slope stability modeling. The temporal variation in the factor of safety (FS) for slope stability analysis was estimated for the simultaneous flow of LFG and leachate with and without gas collection and leachate recirculation for varying LFG generation rates and waste moisture contents. A significant decline in the FS for landfill slope stability was observed when recirculating leachate without active gas collection. Even without pressurized leachate recirculation, a significant decline in the FS value was observed for landfills with relatively high in situ moisture content without active gas collection. In some modeled scenarios without LFG collection, the FS value was lower than 1. The analysis suggests that the landfill side slope stability analysis should incorporate LFG generation and the resultant pressure for landfills containing high-moisture-content waste and for the landfill with pressurized leachate recirculation. The analysis suggests that an efficient gas collection system plays a critical role in the geotechnical stability of the slope of wet landfills and the performance of leachate recirculation trenches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of geotechnical and geoenvironmental engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.