Abstract

In this study, the isothermal detection of a cervical cancer-associated long non-coding RNA (lncRNA), namely, lncRNA-ATB, was performed for the first time with high selectivity and sensitivity via a T7 RNA polymerase transcription-mediated amplification system combined with a graphene oxide (GO) fluorescence-based sensor. Specific lncRNA primers with the T7 promoter overhang were designed and further had with the efficient amplification ability of T7 RNA polymerase. This detection platform distinguished the target lncRNA-ATB from other lncRNAs. In addition, the super fluorescence quenching ability of GO resulted in the development of a switch on/off fluorescence sensor. The resulting platform was able to detect target lncRNAs from samples of cervical cancer cell lines (HeLa) and human sera with high selectivity and a low detection limit of 1.96 pg. Therefore, the assay developed in this study demonstrated a high potential as an alternative tool for lncRNA quantification in clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.