Abstract

AbstractThis research was accomplished to investigate the kinetics of isothermal crystallization of polyethylene oxide (PEO)/silver nanoplate composites. It was obtained that the spherulites increased in size and numbers with time for the composites with various particle loadings. Additionally, the spherulite growth rate of composites decreased with an increase in the crystallization temperature and increased with the addition of nanoplates. The spherulite growth rate was further analyzed by the theory developed by Lauritzen and Hoffman. The product of the lateral surface free energy (σ) and the end surface free energy (σe) decreased with an increase in the content of nanoplates. We proposed the possible crystallization mechanisms of these PEO/nanoplate composites according to the change of σ and σe with the presence of nanoplates. A controlled experiment showed a minor change in PEO crystallization with the presence of a surfactant C16TAB. This implied that the unique size and shape of nanoplates plays a key role on hindering the primary nucleation of PEO and increasing the spherulite growth rate. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.