Abstract
Polyethylene/montmorillonite (PE/MMT) nanocomposites with different dispersion states of MMT were prepared by in situ polymerization. Isothermal crystallization of the intercalated nanocomposite, in which the PE chains were confined in the MMT layers, was studied and was compared with that of the exfoliated nanocomposite. It is observed that the intercalated sample has longer induction period, longer crystallization half time and larger crystallization activation energy than the exfoliated sample, showing that crystallization of PE is retarded due to confinement of the MMT layers. Analysis of crystallization kinetics shows that Avrami exponent ( n) increases gradually with crystallization temperature. However, the maximal value of n is 2.0 for the intercalated sample, but it can reach 3.0 for the exfoliated sample. It is inferred that the stems of the PE crystals confined in the MMT layers are parallel to the MMT layers. The Hoffman–Weeks extrapolation method cannot be applied in the intercalated sample because of the small lateral surface of the PE crystals. Based on the depression of the melting temperature, the specific free energy of the PE/MMT interface was estimated, which is about 1.0 mJ/cm 2, much smaller than the free energy of the lateral surface of PE crystals. This is attributed to the origin of the strong nucleation effect of MMT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.