Abstract

The crystallization mechanisms and kinetics of micellar sodium dodecyl sulfate (SDS) solutions in water, under isothermal conditions, were investigated experimentally by a combination of reflection optical microscopy (OM), differential scanning calorimetry (DSC), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The rates of nucleation and growth were estimated from OM and DSC across temperatures ranging from 20 to −6 °C for 20% SDS-H2O, as well as for 10 and 30% SDS-H2O at representative temperatures of 6, 2, and −2 °C. A decrease in temperature increased both nucleation and growth rates, and the combined effect of the two processes on the morphology was quantified via both OM and ATR-FTIR. Needles, corresponding to the hemihydrate polymorph, become the dominant crystal form at ≤ −2 °C, while platelets, the monohydrate, predominate at higher temperatures. Above 8 °C, crystallization was only observed if seeded from crystals generated at lower temperatures. Our results pr...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call