Abstract

The isothermal characteristics of a rectangular parallelepiped sodium heat pipe were investigated for high-temperature applications. The heat pipes was made of stainless steel of which the dimension was 140 m(L) ×95m(W) ×46m(H) and the thickness of the container was 5 mm. Both inner surfaces of evaporator and condenser were covered with screen meshes to help spread the liquid state working fluid. To provide additional path for the working fluid, a lattice structure covered with screen mesh wick was inserted in the heat pipe. The bottom surface of the heat pipe was heated by an electric heater and the top surface was cooled by circulating coolant. The concern in this study was to enhance the temperature uniformity at the bottom surface of the heat pipe while an uneven heat source up to 900 W was in contact. The temperature distribution over the bottom surface was monitored at more than twenty six locations. It was found that the operating performance of the sodium heat pipe was critically affected by the inner wall temperature of the condenser region where the working fluid may be changed to a solid phase unless the temperature was higher than its melting point. The maximum temperature difference across the bottom surface was observed to be 114°C for 850 W thermal load and 100°C coolant inlet temperature. The effects of fill charge ratio, coolant inlet temperature and operating temperature on thermal performance of heat pipe were analyzed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call