Abstract

We have performed an in-depth characterisation of the microstructure evolution of 20Cr-25Ni Nb-stabilised austenitic stainless steel during isothermal annealing at 930 °C using scanning and transmission electron microscopy. This steel grade is used as cladding material in advanced gas-cooled fission reactors, due to its resistance to thermal creep and water corrosion. The initial deformed microstructure undergoes recrystallisation via a strain-induced boundary migration mechanism, attaining a fully recrystallised microstructure after 120 s of annealing. The transition from low-to-high grain boundaries has already occurred after 15 s, together with an increase in the cube grain orientation at the expense of the S texture component. After 120 s, the grain boundary migration induces the formation of new fine Nb(C,N) particles, whereas the pre-existing particles become enriched in Ni and Si. The resulting particle population limits the grain growth in the austenitic matrix, based on the Zener pinning model, resulting in relatively small recrystallised austenite grains and a high density of high-angle and special coincidence-lattice-site grain boundaries, together with a large number of particle/matrix interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.