Abstract

Herein, the application of granular activated carbon, jujube, and barberry tree stem powder for the removal of gasoline and kerosene from water was investigated. Kerosene removal rates upwards of 68.48, 83.87, and 99.02% were achieved using jujube tree stem powder, barberry tree stem powder, and granular activated carbon, respectively. Besides, gasoline removal rates upwards of 69.35, 55.02, and 95.59% were attained using jujube tree stem powder, barberry tree stem powder, and granular activated carbon, respectively. Isotherm data were further investigated and fitted using Langmuir, Freundlich, and Elovich models. The results indicated that the adsorption onto jujube adsorbent is a multilayer adsorption process over a heterogeneous surface, which is best illustrated by the Temkin (Ave. R 2= 0.95) model. It was found that the Temkin isotherm (Ave. R 2= 0.81) best describes the properties of barberry stem powder in the adsorption of gasoline and kerosene from water. Moreover, the best models to describe the characteristics of granular activated carbon in the adsorption of gasoline and kerosene from water were Freundlich (Ave. R 2= 0.74) and Langmuir (Ave. R 2= 0.73) isotherms, respectively. The adsorption kinetics showed that the pseudo-second-order was appropriate in modeling the adsorption kinetics of gasoline and kerosene to the studied adsorbents (R 2>0.74).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.