Abstract

Isotactic polypropylene (iPP) and syndiotactic polypropylene (sPP) nanocomposites containing 0.1–3.5 wt.% multi-wall carbon nanotubes (MWCNTs) have been synthesized via in situ polymerization method with the use of C2- and Cs- symmetry zirconocenes activated by methylaluminoxane (MAO) in liquid propylene medium. Fracture morphology studies by SEM reveal different MWCNT dispersion efficiency in various polymer matrices, which arises from the catalytic peculiarities of the composite synthesis. Considerable Young’s modulus enhancement of iPP and sPP (25–66%) takes place even at low MWCNT loadings (below 0.5 wt.%). The obtained nanocomposites can find use as efficient electromagnetic shielding materials and microwave absorbing filters due to relatively low permittivity values and considerable dielectric losses in microwave range. Calorimetry data demonstrate that MWCNTs exert evident influence as nucleating agents causing the rise of iPP and sPP crystallization temperature. Considerable retardation effect on iPP thermal oxidative degradation has been observed: the temperature of maximal weight loss rate rises by ~52 °C upon incorporating only 1.4 wt.% MWCNTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.