Abstract

Rechargeable sodium ion batteries (SIBs) have promising applications in large-scale energy storage systems. Iron-based Prussian blue analogs (PBAs) are considered as potential cathodes owing to their rigid open framework, low-cost, and simple synthesis. However, it is still a challenge to increase the sodium content in the structure of PBAs and thus suppress the generation of defects in the structure. Herein, a series of isostructural PBAs samples are synthesized and the isostructural evolution of PBAs from cubic to monoclinic after modifying the conditions is witnessed. Accompanied by, the increased sodium content and crystallinity are discovered in PBAs structure. The as-obtained sodium iron hexacyanoferrate (Na1.75 Fe[Fe(CN)6 ]0.9743 ·2.76H2 O) exhibits high charge capacity of 150mAhg-1 at 0.1C (17mAg-1 ) and excellent rate performance (74mAhg-1 at 50C (8500mAg-1 )). Moreover, their highly reversible Na+ ions intercalation/de-intercalation mechanism is verified by in situ Raman and Powder X-ray diffraction (PXRD) techniques. More importantly, the Na1.75 Fe[Fe(CN)6 ]0.9743 ·2.76H2 O sample can be directly assembled in a full cell with hard carbon (HC) anode and shows excellent electrochemical performances. Finally, the relationship between PBAs structure and electrochemical performance is summarized and prospected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.