Abstract
The structural order and ordering conditions of the self-assembled monolayers (SAMs) of HSCH2CH2CH2O(EO)xCH3, where EO = CH2CH2O and x = 3-9, on polycrystalline gold (Au) were determined by reflection-absorption infrared spectroscopy (RAIRS), spectroscopic ellipsometry (SE), and electrochemical impedance spectroscopy. For x = 5-7, RAIRS and SE data show that the oligo(ethylene oxide) [OEO] segments adopt the near single phase, 7/2 helical conformation of the folded-chain crystal polymorph of crystalline poly(ethylene oxide), oriented normal to the substrate. These SAMs exhibit OEO segment structure and orientation identical to that found in a previous isostructural series [HS(CH2CH2O)6-8C18H37 SAMs. Vanderah, D. J., et al. Langmuir 2003, 19, 3752] and are anisotropic films for surface science metrology where structure is constant and thickness increases in 0.30 nm increments. In addition, this is the first example of OEO SAMs to attain this highly ordered, helical conformation where the (EO)x segment is separated from the Au-sulfur headgroup by a polymethylene chain. For x = 4, 8, and 9, the SAMs are largely helical but show evidence of nonhelical conformations and establish the upper and lower limits of the isostructural set. For x = 3, the SAMs are largely disordered containing some all-trans conformation. SAM order as a function of immersion time from 100% water and 95% ethanol indicates that the HSCH2CH2CH2O(EO)5-7CH3 SAMs order faster and under a wider range of conditions than omega-alkyl 1-thiaolio(ethylene oxide) [HS(EO)xCH3] SAMs, reported earlier (Vanderah, D. J., et al. Langmuir 2002, 18, 4674 and Vanderah, D. J., et al. Langmuir 2003, 19, 2612).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.