Abstract

Inflammatory bowel diseases (IBD) are chronic debilitating inflammatory disorders of the gastrointestinal tract that is characterized by intestinal epithelial barrier dysfunction and excessive activation of the mucosal immune system. Isosteviol (IS) has been reported to possess anti-inflammatory properties. In this study, we aimed to investigate effects and mechanisms of IS against intestinal inflammation. C57BL/6 mice were randomly divided into Sham, IS, dextran sodium sulfate (DSS), and DSS+IS groups. In vivo colitis model was established using 3.0% DSS. In vitro, tumor necrosis factor-α (TNF-α)-treated Caco-2 cells were used as an inflammatory model. Clinical characteristics, histological performance, proinflammatory cytokine expression, and intestinal barrier function were measured. In addition, activation of the pyruvate dehydrogenase kinase 1/protein kinase B/nuclear factor-κB (PDK1/AKT/NF-κB) signaling pathway was determined by western blotting and quantitative polymerase chain reaction. The results showed that IS mitigated DSS-induced colitis by reducing body weight loss, colonic shortening, and disease activity index score, and by inhibiting expressions of proinflammatory cytokines IL-1β, IL-6, and TNF-α. IS restored impaired barrier function by regulating tight junctions and intestinal epithelial permeability. Furthermore, we found that IS ameliorated intestinal barrier injury by regulating PDK1/AKT/NF-κB signaling pathway. In conclusion, our results demonstrate that IS attenuates experimental colitis by preserving intestinal barrier function, probably mediated by PDK1/AKT/NF-κB signaling pathway. These findings highlight the potential of IS as a therapeutic agent for IBD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.