Abstract
This work uses ab-initio CBS-QB3 and density functional theory (B3LYP) to analyze the structure, stability, and aromaticity of all isosteric nitrogen-boron pyrroles. The mono-NB unit substituted group of the isosteric NB pyrrole has four isosteres, whereas the multi-NB unit substituted group has two isosteres. These two groups make up all isosteric NB pyrrole. For structural, energetic, magnetic, and electron delocalization criteria, the results highlight the predominance of the PN3B2 isostere and its greater stability over other conformers. In addition, the global reactivity indices, ESP, HOMO-LUMO, and NBO charges have all been estimated to forecast the active side's electron donation and acceptance. These isosteres are categorized as weak electrophiles and marginal nucleophiles. NB-isosteres have poorer stability, HOMO-LUMO gap, and aromaticity than the parent (pyrrole). In general, NB compounds with more ring sharing are less aromatic than NB molecules with less ring sharing. The current study is anticipated to help in understanding of the chemistry of NB substituted molecules and their experimental identification and characterization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.