Abstract

To reduce harmful sulfur content in lubricant additives, making use of isosterism has been shown to be an effective strategy. When thiobenzothiazole compounds were used as templates, the exchange of sulfur atoms in the thiazole ring with oxygen atoms and NH groups produced twelve isosteres. Similarly, 2-benzothiazole- S-carboxylic acid esters were used as template molecules to produce six isosteres. About 30% of the isosteres exhibited a satisfactory deviation of ±5% relative to the template, ignoring the specific changes in the base oils, the differences in molecular structure, and the friction or wear properties. The template molecules and isosteres in triisodecyl trimellitate exhibited better tribological properties than in trimethylolpropane trioleate or bis(2- ethylhexyl) adipate. Comparative molecular field analysis (CoMFA)- and comparative molecular similarity index analysis (CoMSIA)-quantitative structure tribo-ability relationship (QSTR) models were employed to study the correlation of molecular structures between the base oils and additives. The models indicate that the higher the structural similarities of the base oils and additives are, the more synergetic the molecular force fields of the lubricating system are; the molecular force fields creating synergistic effects will improve tribological performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.