Abstract

The Laccadive Ridge (L-R), trending roughly parallel to the west coast of India, is an intriguing segment of the northernmost Chagos-Laccadive Ridge (C-L-R) system. Although crustal nature and isostatic response of the southern C-L-R is well known, there are no similar studies on the L-R. In the present study, the isostatic response of the lithosphere beneath the L-R is estimated so as to characterize its crustal nature, total crustal as well as effective elastic plate thickness and mode of compensation. Twelve gravity and bathymetry profiles across the ridge were analyzed using linear transfer function and forward model techniques. The observed admittance function within the diagnostic waveband of 250 < λ > 80 km (0.025 < k > 0.080 km−1) fits well with (i) the Airy model whose average crustal thickness (Tc) and density are 17 ± 2 km and 2.7 × 103 kg m−3, respectively, and (ii) the thin plate flexure model of isostasy with an effective elastic plate thickness (Te) of 2–3 km. The estimated average crustal thickness and density are in good agreement with published seismic refraction results over the ridge. The results of the present study support an Airy model of isostasy for the L-R. The low Te value, in view of other published results in the study area, suggests stretched and loaded continental lithosphere of the L-R during the evolution of the western continental margin of India.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call