Abstract

The decreasing uncertainties in theoretical predictions and experimental measurements of several hadronic observables related to weak processes, which in many cases are now smaller than O(1%), require theoretical calculations to include subleading corrections that were neglected so far. Precise determinations of leptonic and semi-leptonic decay rates, including QED and strong isospin-breaking effects, can play a central role in solving the current tensions in the first-row unitarity of the CKM matrix. In this work we present the first RBC/UKQCD lattice calculation of the isospin-breaking corrections to the ratio of leptonic decay rates of kaons and pions into muons and neutrinos. The calculation is performed at fixed lattice spacing (a−1 ≃ 1.730 GeV) on a 483× 96 volume with Nf = 2 + 1 dynamical quarks close to the physical point and domain wall fermions in the Möbius formulation are employed. Long-distance QED interactions are included according to the QEDL prescription and the crucial role of finite-volume electromagnetic corrections in the determination of leptonic decay rates, which produce a large systematic uncertainty, is extensively discussed. Finally, we study the different sources of uncertainty on |Vus|/|Vud| and observe that, if finite-volume systematics can be reduced, the error from isospin-breaking corrections is potentially sub-dominant in the final precision of the ratio of the CKM matrix elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.