Abstract

We study the entrainment effect between superfluid neutrons and charge neutral fluid (called the proton fluid) which is made of protons and electrons in a neutron star interior within the two-fluid formalism and using a relativistic model where baryon-baryon interaction is mediated by the exchange of $\ensuremath{\sigma}$, $\ensuremath{\omega}$, and $\ensuremath{\rho}$ mesons. This model of strong interaction also includes scalar self-interactions. The entrainment matrix and entrainment parameter are calculated using the parameter sets of Glendenning (GL) and another non-linear (NL3) interaction. The inclusion of $\ensuremath{\rho}$ mesons strongly influences the entrainment parameter (${ϵ}_{\text{mom}}$) in a superfluid neutron star. The entrainment parameter is constant at the core and drops rapidly at the surface. It takes values within the physical range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.