Abstract
Within the framework of an isospin-dependent Boltzmann-Uehling-Uhlenbeck (BUU) model using initial proton and neutron densities calculated from the nonlinear relativistic mean-field (RMF) theory, we compare the strength of transverse collective flow in reactions $^{48}Ca+^{58}Fe$ and $^{48}Cr+^{58}Ni$, which have the same mass number but different neutron/proton ratios. The neutron-rich system ($^{48}Ca+^{58}Fe$) is found to show significantly stronger negative deflection and consequently has a higher balance energy, especially in peripheral collisions. NOTE ADDED IN PROOF: The new phenomenon predicted in this work has just been confirmed by an experiment done by G.D. Westfall et al. using the NSCL/MSU radioactive beam facility and a spartan soccer. A paper by R. Pak et al. is submitted to PRL to report the experimental result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.