Abstract

We obtain isospectral Euler–Bernoulli beams by using factorization and Lie symmetry techniques. The canonical Euler–Bernoulli beam operator is factorized as the product of a second-order linear differential operator and its adjoint. The factors are then reversed to obtain isospectral beams. The factorization is possible provided the coefficients of the factors satisfy a system of non-linear ordinary differential equations. The uncoupling of this system yields a single non-linear third-order ordinary differential equation. This ordinary differential equation, called the principal equation, is analyzed, reduced or solved using Lie group methods. We show that the principal equation may admit a one-dimensional or three-dimensional symmetry Lie algebra. When the principal system admits a unique symmetry, the best we can do is to depress its order by one. We obtain a one-parameter family of invariant solutions in this case. The maximally symmetric case is shown to be isomorphic to a Chazy equation which is solved in closed form to derive the general solution of the principal equation. The transformations connecting isospectral pairs are obtained by numerically solving systems of ordinary differential equations using the fourth-order Runge–Kutta method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.