Abstract

AbstractWe study the isoscalar giant monopole resonance for drip-lines and super heavy nuclei in the framework of relativistic mean field theory with a scaling approach. The well known extended Thomas-Fermi approximation in the nonlinear σ-ω model is used to estimate the giant monopole excitation energy for some selected light spherical nuclei starting from the region of proton to neutron drip-lines. The application is extended to the super heavy region for Z=114 and 120, which are predicted by several models as the next proton magic numbers beyond Z=82. We compared the excitation energy obtained by four successful force parameters NL1, NL3, NL3*, and FSUGold. The monopole energy decreases toward the proton and neutron drip-lines in an isotopic chain for lighter mass nuclei, in contrast to a monotonic decrease for super heavy isotopes. The maximum and minimum monopole excitation energies are obtained for nuclei with minimum and maximum isospin in an isotopic chain, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.